PHYSICS - Chanakya Mandal Pariwar

PHYSICS (Medium - English)

PAPER‐I (subject code 1047)

1.

(a) Mechanics of Particles :

Laws of motion; conservation of energy and momentum, applications to rotating frames,
centripetal and Coriolis accelerations; Motion under a central force; Conservation of angular
momentum, Kepler’s laws; Fields and potentials; Gravitational field and potential due to spherical
bodies, Gauss and Poisson equations, gravitational self-energy; Two-body problem; Reduced
mass;Rutherford scattering; Centre of mass and laboratory reference frames.

(b) Mechanics of Rigid Bodies :

System of particles; Centre of mass, angular momentum, equations of motion; Conservation
theorems for energy, momentum and angular momentum; Elastic and inelastic collisions; Rigid
Body; Degrees of freedom, Euler’s theorem, angular velocity, angular momentum, moments of
inertia, theorems of parallel and perpendicular axes, equation of motion for rotation; Molecular
rotations (as rigid bodies); Di and tri-atomic molecules; Precessional motion; top, gyroscope.

(c) Mechanics of Continuous Media :

Elasticity, Hooke’s law and elastic constants of isotropic solids and their inter-relation; Streamline
(Laminar) flow, viscosity, Poiseuille’s equation, Bernoulli’s equation, Stokes’ law and
applications.

(d) Special Relativity :

Michelson-Morely experiment and its implications; Lorentz transformations length contraction,
time dilation, addition of relativistic velocities, aberration and Doppler effect, mass-energy
relation, simple applications to a decay process. Four dimensional momentum vector; Covariance
of equations of physics.

2. Waves and Optics :

(a) Waves :

Simple harmonic motion, damped oscillation, forced oscillation and resonance; Beats; Stationary
waves in a string; Pulses and wave packets; Phase and group velocities; Reflection and refraction
from Huygens’ principle.

(b) Geometrial Optics :

Laws of reflection and refraction from Fermat’s principle; Matrix method in paraxial optic-thin
lens formula, nodal planes, system of two thin lenses, chromatic and spherical aberrations.

(c) Interference :

Interference of light -Young’s experiment, Newton’s rings, interference by thin films, Michelson
interferometer; Multiple beam interference and Fabry Perot interferometer.

(d) Diffraction :

Fraunhofer diffraction – single slit, double slit, diffraction grating, resolving power; Diffraction by
a circular aperture and the Airy pattern; Fresnel diffraction: half-period zones and zone plates,
circular aperture.

(e) Polarisation and Modern Optics :

Production and detection of linearly and circularly polarized light; Double refraction, quarter
wave plate; Optical activity; Principles of fibre optics, attenuation; Pulse dispersion in step index
and parabolic index fibres; Material dispersion, single mode fibers; Lasers-Einstein A and B
coefficients. Ruby and He-Ne lasers. Characteristics of laser light-spatial and temporal coherence;
Focusing of laser beams. Three-level scheme for laser operation; Holography and simple
applications.

3. Electricity and Magnetism :  

(a) Electrostatics and Magnetostatics :

Laplace and Poisson equations in electrostatics and their applications; Energy of a system of
charges, multipole expansion of scalar potential; Method of images and its applications. Potential
and field due to a dipole, force and torque on a dipole in an external field; Dielectrics,
polarisation. Solutions to boundary-value problems-conducting and dielectric spheres in a uniform
electric field; Magnetic shell, uniformly magnetised sphere; Ferromagnetic materials, hysteresis,
energy loss.

(b) Current Electricity :

Kirchhoff’s laws and their applications. Biot-Savart law, Ampere’s law, Faraday’s law, Lenz’ law.
Self-and mutual- inductances; Mean and rms values in AC circuits; DC and AC circuits with R, L
and C components; Series and parallel resonance; Quality factor; Principle of transformer.

4. Electromagnetic Waves and Blackbody Radiation : 

Displacement current and Maxwell’s equations; Wave equations in vacuum, Poynting theorem;
Vector and scalar potentials; Electromagnetic field tensor, covariance of Maxwell’s equations;
Wave equations in isotropic dielectrics, reflection and refraction at the boundary of two
dielectrics; Fresnel’s relations; Total internal reflection; Normal and anomalous dispersion;
Rayleigh scattering; Blackbody radiation and Planck ’s radiation law- Stefan-Boltzmann law,
Wien’s displacement law and Rayleigh-Jeans law.

5. Thermal and Statistical Physics : 

(a) Thermodynamics :

Laws of thermodynamics, reversible and irreversible processes, entropy; Isothermal, adiabatic,
isobaric, isochoric processes and entropy changes; Otto and Diesel engines, Gibbs’ phase rule and
chemical potential; Van der Waals equation of state of a real gas, critical constants; Maxwell-
Boltzmann distribution of molecular velocities, transport phenomena, equipartition and virial
theorems; Dulong-Petit, Einstein, and Debye’s theories of specific heat of solids; Maxwell
relations and application; Clausius-Clapeyron equation. Adiabatic demagnetisation, Joule-Kelvin
effect and liquefaction of gases.

(b) Statistical Physics :

Macro and micro states, statistical distributions, Maxwell-Boltzmann, Bose-Einstein and Fermi-
Dirac Distributions, applications to specific heat of gases and blackbody radiation; Concept of
negative temperatures.

PAPER‐II (subject code 1048)

1. Quantum Mechanics : 

Wave-particle duality; Schroedinger equation and expectation values; Uncertainty principle;
Solutions of the one-dimensional Schroedinger equation for free particle (Gaussian wave-packet),
particle in a box, particle in a finite well, linear harmonic oscillator; Reflection and transmission by
a step potential and by a rectangular barrier; Particle in a three dimensional box, density of states,
free electron theory of metals; Angular momentum; Hydrogen atom; Spin half particles, properties
of Pauli spin matrices.

2. Atomic and Molecular Physics :

Stern-Gerlach experiment, electron spin, fine structure of hydrozen atom; L-S coupling, J-J
coupling; Spectroscopic notation of atomic states; Zeeman effect; Franck-Condon principle and
applications; Elementary theory of rotational, vibrational and electronic spectra of diatomic
molecules; Raman effect and molecular structure; Laser Raman spectroscopy; Importance of
neutral hydrogen atom, molecular hydrogen and molecular hydrogen ion in astronomy.
Fluorescence and Phosphorescence; Elementary theory and applications of NMR and EPR;
Elementary ideas about Lamb shift and its significance.

3. Nuclear and Particle Physics :

Basic nuclear properties-size, binding energy, angular momentum, parity, magnetic moment; Semiempirical
mass formula and applications. Mass parabolas; Ground state of a deuteron, magnetic
moment and non-central forces; Meson theory of nuclear forces; Salient features of nuclear forces;
Shell model of the nucleus – success and limitations; Violation of parity in beta decay; Gamma
decay and internal conversion; Elementary ideas about Mossbauer spectroscopy; Q-value of nuclear
reactions; Nuclear fission and fusion, energy production in stars. Nuclear reactors.
Classification of elementary particles and their interactions; Conservation laws; Quark structure of
hadrons : Field quanta of electroweak and strong interactions; Elementary ideas about unification of
forces; Physics of neutrinos.

4. Solid State Physics, Devices and Electronics :

Crystalline and amorphous structure of matter; Different crystal systems, space groups; Methods of
determination of crystal structure; X-ray diffraction, scanning and transmission electron
microscopies; Band theory of solids—conductors, insulators and semi-conductors; Thermal
properties of solids, specific heat, Debye theory; Magnetism: dia, para and ferromagnetism;
Elements of super-conductivity, Meissner effect, Josephson junctions and applications; Elementary
ideas about high temperature super-conductivity.
Intrinsic and extrinsic semi-conductors- p-n-p and n-p-n transistors; Amplifiers and oscillators. Opamps;
FET, JFET and MOSFET; Digital electronics-Boolean identities, De Morgan’s laws, Logic
gates and truth tables. Simple logic circuits; Thermistors, solar cells; Fundamentals of
microprocessors and digital computers.